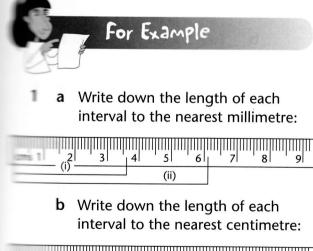
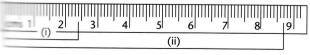
KEYWORDS


Accuracy	Kilometre	
Area	Measurement	
Capacity	Metre	
Centimetre	Millimetre	
Composite figures	Perimeter	
	Prism	
Hectare	Volume	


decimals. Students can review Chapters 2 for assistance.

Units of Length

(abbreviated m). Other lengths are abbreviated m, or divisions of it:

> 1000 mm = 1 m 100 cm = 1 m ∴ 10 mm = 1 cm Also 1000 m = 1 km

- **2 a** Convert the following to the given units:
 - i 4 m = ____ cm
 - ii 3 km = ____ m
 - iii 7000 mm = ____ m
 - **iv** 270 cm = ____ m
 - **v** 64 mm = ____ cm
 - **vi** 3 400 000 mm = ____ km
 - **vii** 800 mm = ____ m
 - **viii** 0.35 km = ____ m
 - **b** Complete the following (using sensible units):
 - **i** Length of pen = 15 _____
 - ii Height of door = 2 _____
 - iii Distance from Singleton to Walgett = 511 _____
 - iv Length of a fingernail = 11 ____
 - c If a 20c coin rolls 85 mm in one revolution:
 - i How far, in metres, will it travel in 25 revolutions?
 - ii How many revolutions of the coin is required for it to travel 30.6 m?

а	i	36 mm 🛛 🚺	61 mm
b	i	2 cm ii	9 cm
а	i	4 × 100 = 400	i.e. 400 cm
	ii	3 × 1000 = 3000	i.e. 3000 m
	iii	7000 ÷ 1000 = 7	i.e. 7 m
	iv	270 ÷ 100 = 2.7	i.e. 2.7 m
	v	64 ÷ 10 = 6.4	i.e. 6.4 cm
	vi	3 400 000 ÷ 1 000 000 = 3.4	
			i.e. 3.4 km

1

2

viii 0.35 × 1000 = 350 i.e. 350 m

b i 15 cm **ii** 2 m

iii 511 km iv 11 mm

c i 85 mm = 0.085 m ∴ Distance = 0.085 m × 25

= 2.125 m

ii Each revolution = 0.085 m∴ No. of revolutions

= 30.6 ÷ 0.085

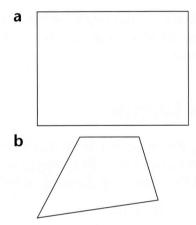
```
= 360
```

:. 360 revolutions are needed.

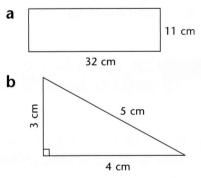
Limits of Measurement

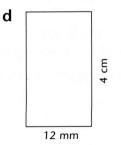
A variety of measuring instruments are used, depending on the length of the object to be measured; for example, a ruler, tape measure or trundle wheel. However, when we measure we are really only approximating. If we say a length is 8 cm, the exact measure could be between 7.5 cm and 8.5 cm. This is called the **limit of measurement**.

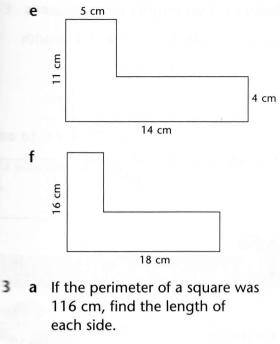
Find the limit of measurement of the following:


- **1** A length of hair is measured as 17 cm.
- 2 A piece of timber is measured as 4.2 m.
- 1 16.5 cm to 17.5 cm
- 2 4.15 m to 4.25 m

Perimeter


The perimeter of a shape is the distance around the shape.


1 Measure the perimeter of these shape with your ruler, leaving your answer in centimetres (cm):



2 Find the perimeter of the following:

c A regular hexagon with side lengths of 14 cm.

- A farmer wishes to fence a paddock that measures 125 metres by 220 metres:
 - **i** Find the perimeter of the paddock.
 - ii How much will it cost the farmer at 95 cents per metre to fence the paddock?

1 a
$$P = 4 + 3 + 4 + 3$$

= 14 \therefore Perimeter is 14 cm.

- **b** P = 2.4 + 1.6 + 1.7 + 3.3= 9.0 \therefore Perimeter is 9.0 cm.
- **2 a** P = 32 + 11 + 32 + 11
 - = 2(32 + 11)
 - = 2(43)
 - = 86 .:. Perimeter is 86 cm.

A hexagon has 6 sides.

b P = 3 + 4 + 5

Area

within a plane shape.

b

- = 12 .:. Perimeter is 12 cm.
- $P = 6 \times 14$ = 84
 - :. Perimeter is 84 cm.

d
$$P = 12 + 40 + 12 + 40$$
 [4 cm = 40 mm]
= 2(12 + 40)
= 2(52)
= 104 ∴ Perimeter is 104 mm.
e 5 cm

$$P = 14 + 4 + 9 + 7 + 5 + 11$$

$$= 50$$
 \therefore Perimeter is 50 cm.

 $\mathbf{f} \qquad \underbrace{\underbrace{\mathsf{E}}_{\mathbf{a}}^{\mathsf{A}} }_{\mathbf{b}} \underbrace{\underbrace{\mathsf{D}}_{\mathsf{E}}}_{\mathsf{C}} \underbrace{\underbrace{\mathsf{D}}_{\mathsf{E}}}_{\mathsf{18 cm}} \underbrace{\mathsf{F}}_{\mathsf{B}}$

From A to B via C is the same distance as A to B via D, E, F:

$$P = 2(16 + 18)$$

= 2(34)
= 68 ∴ Perimeter is

3 a Perimeter = 116 cm \therefore Side = 116 \div 4

= 29

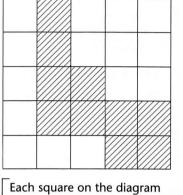
: Length of side is 29 cm.

i
$$P = 2(125 + 220)$$

= 2(345)
= 690 \therefore Perimeter is 690 m.

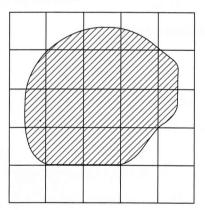
= \$655.50

Area is a measure of the space contained


:. Cost to farmer is \$655.50.

Chapter 8—Measurement 141

68 cm.



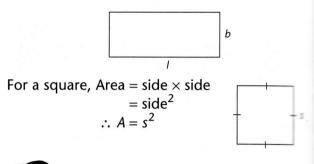
1 Find the area of the shaded region:

measures 1 unit by 1 unit, called a square unit (i.e. unit²).

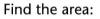
2 Find the approximate area of the shaded region:

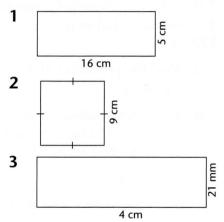
- **1** By counting, Area = 10 square units = 10 units^2
- 2 By counting, Area = 8 squares plus 9 'half squares' = $8 + 4^{1}$

$$= 0 + 4\frac{1}{2}$$


$$= 12\frac{1}{2}$$

 \therefore Area is approximately $12\frac{1}{2}$ units².


Area of Rectangles and Squares

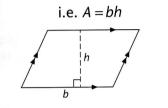

For a rectangle, Area = length \times breadth

i.e. *A* = *lb*

Remember that if the units in the question are in cm, then the area units are cm².

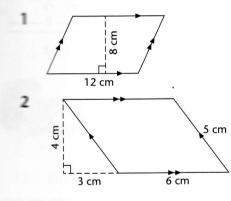
1 *A* = *lb*

- = 80
- \therefore Area is 80 cm².
- **2** $A = s^2$
 - $=9^{2}$


 \therefore Area is 81 cm².

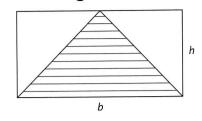
 $\therefore A = lb$ = 40 × 21 = 840 A good way to learn a formula is to write it down in your solution before you use it.

... Area is 840 mm².


Area of a Parallelogram

For a parallelogram, Area = base × height

For Example

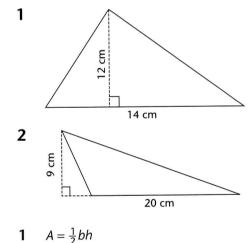

Find the area:

- $\begin{array}{l}
 \mathbf{1} \quad A = bh \\
 = 12 \times 8
 \end{array}$
 - = 96
 - \therefore Area is 96 cm².
- 2 A = bh
 - = 6 × 4
 - = 24

 \therefore Area is 24 cm².

Area of a Triangle

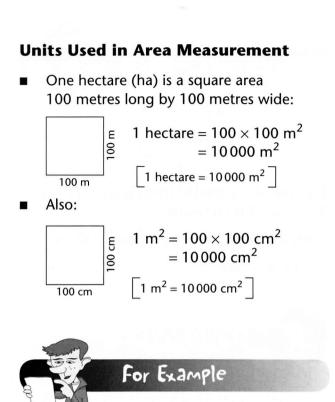
The area of the shaded triangle is **exactly** half the area of the rectangle.

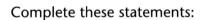

 \therefore For a triangle, Area = $\frac{1}{2} \times base \times height$

i.e.
$$A = \frac{1}{2}bh$$

$$A = \frac{1}{2} \times b \times h$$

Find the area:




$$= \frac{1}{2} \times 14 \times 12$$

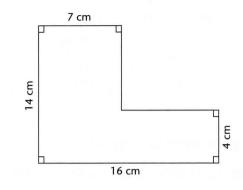
= 7 × 12
= 84
∴ Area is 84 cm².

$$\mathbf{2} \quad A = \frac{1}{2}bh$$

$$= \frac{1}{2} \times 20 \times 9$$

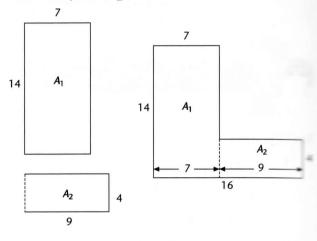
= 10 × 9
= 90
∴ Area is 90 cm².

Chapter 8—Measurement 143



- 1 30000 cm² = ____ m²
- **2** 4.2 m² = $_$ cm²
- 3 2 ha = m²
- 4 84000 m² = ____ ha
- **1** $30\,000 \div 10\,000 = 3 \text{ m}^2$
- **2** $4.2 \times 10000 = 42000 \text{ cm}^2$
- **3** $2 \times 10000 = 20000 \text{ m}^2$
- **4** 84000 ÷ 10000 = 8.4 ha

Composite Areas and Other Area Problems


Sometimes the area to be calculated is a combination of two or more regular shapes; for example, two rectangles, or a rectangle and a triangle.

Find the area of this composite shape (all angles are right angles):

Method 1

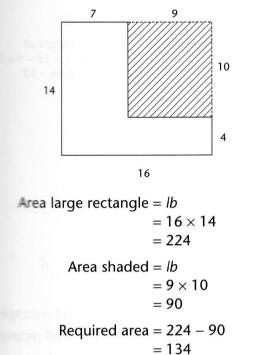
Divide the shape into two rectangles with a vertical (or horizontal) line. Call the areas formed A_1 and A_2 :

 \therefore Total area = $A_1 + A_2$

For A₁ we have used a vertical line (dotted):

$$\begin{array}{l} \mathsf{A}_1 = lb \\ = 14 \times 7 = 98 \end{array}$$

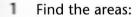
For A_2 , we must find the length before we can calculate the area. This is 16 - 7 = 9 cm:

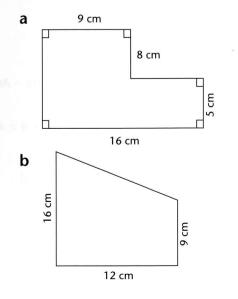

$$A_2 = lb$$

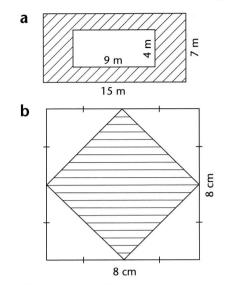
= 9 × 4
= 36

Total area = 98 + 36 = 134 (i.e. $A_1 + A_2$) ∴ Area is 134 cm².

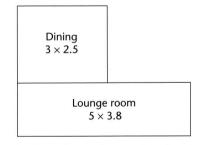
144 Excel Mathematics Study Guide Year 7

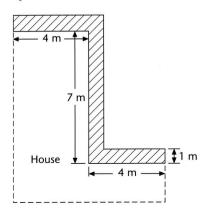

lierhod 2


method involves completing the full recargle (dotted line) and then subtracting recerct piece (shaded):


 \therefore Area is 134 cm².

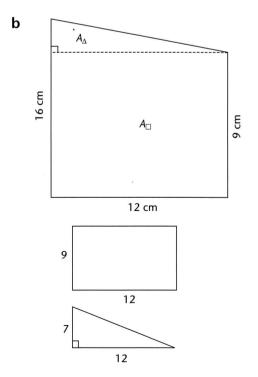
For Example




2 Find the area of the shaded regions:

- **3** The diagram below shows part of the plan of a house where the size of rooms is expressed in metres. Find the:
 - a Area of each room
 - b Total cost of carpeting the lounge and dining areas if carpet costs \$30/m².

4 Kevin is to lay a 1 m wide footpath around the back of his house using rectangular pavers that are 20 cm by 10 cm:

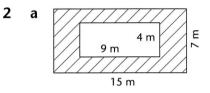

a Find the area to be paved.

1

- **b** How many pavers will Kevin need?

= 72 + 80 = 152

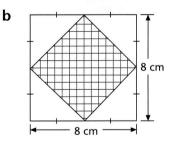
Area is 152 cm².



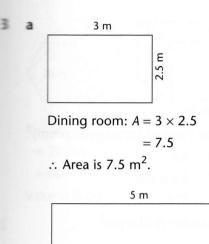
This time, with a horizontal line (dotted) we form a triangle and a rectangle

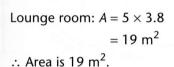
Area_{$$\Box$$} = *lb*
= 12 × 9
= 108
Area _{\triangle} = $\frac{1}{2}bh$
= $\frac{1}{2} \times 12 \times 7$
= 42
Height of
 $\triangle = 16 - 9 = 7$
Base = 12
Total area = $A_{\Box} + A_{\triangle}$

 $area = A_{\Box} + A_{\triangle}$ = 108 + 42= 150


Area is 150 cm².

Shaded area = Area of large rectangle - Area of small rectangle

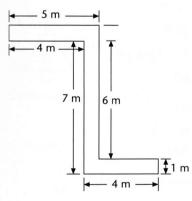

$$= 15 \times 7 - 9 \times 4$$
$$= 105 - 36 \qquad [A = b]$$
$$= 69$$


 \therefore Shaded area is 69 m².

Shaded area = Area of square - Area of 4 triangles

 $= 8 \times 8 - 4(\frac{1}{2} \times 4 \times 4)$ = 64 - 4(8) = 64 - 32 = 32 ∴ Shaded area is 32 cm².

3.8 m


- **b** Total area = 7.5 + 19
 - $= 26.5 \text{ m}^2$

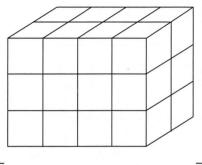
Total cost = 26.5 × \$30 = \$795

... Total cost is \$795.

a Total area =
$$5 \times 1 + 6 \times 1 + 4 \times 1$$

= 15 $\begin{bmatrix} A = lb \end{bmatrix}$

Total area is 15 m^2 Area to be paved is 15 m^2 .



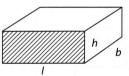
b Area of each paver = $20 \text{ cm} \times 10 \text{ cm}$ = 200 cm^2

Now, total area in $cm^2 = 15 \times 10000$ = 150000 cm² ∴ No. of pavers = 150000 ÷ 200
 = 750
 ∴ 750 pavers are required.

Volume

Volume is a measure of the space contained in a solid shape:

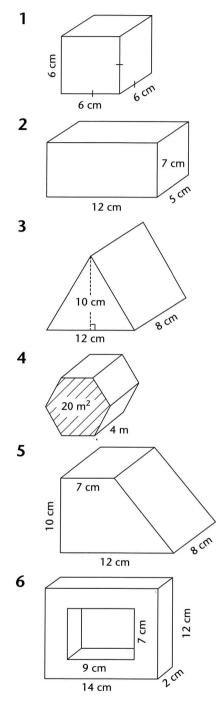
Each cube measures 1 cm by 1 cm by 1 cm, which is called a cubic centimetre (i.e. cm^3).

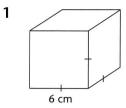

By 'counting' we can see that the volume of this solid is $4 \times 2 \times 3 = 24$ cm³.

Volumes of Prisms

V = Ah, where V = Volume A = Area of cross section h = height

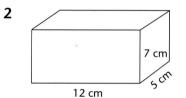
For a rectangular prism, this can be thought of as:


Volume = length \times breadth \times height as Area = lb


Remember units of volume are units³.

Chapter 8—Measurement 147

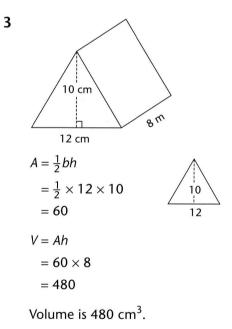
Find the volume:

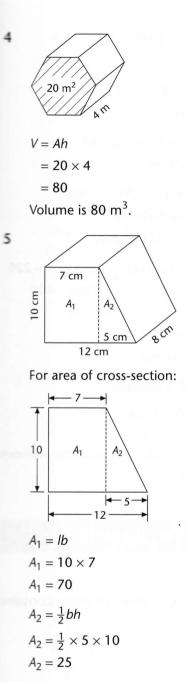


Cube (type of rectangular prism) V = lbh $\therefore V = 6 \times 6 \times 6$

= 216

 \therefore Volume is 216 cm³.

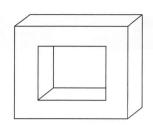

(Rectangular prism)


$$V = lbh$$

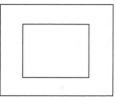
$$\therefore V = 12 \times 7 \times 5$$

$$= 420$$

 \therefore Volume is 420 cm³.



Cross-section A = 70 + 25= 95

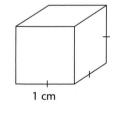

 $\therefore V = Ah$ $= 95 \times 8$ = 760

 \therefore Volume is 760 cm³.

6

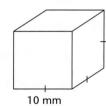
Area of cross section:

A = Area of large rect. – Area of small rect.


- $= 14 \times 12 9 \times 7$
- = 168 63
- = 105
- $\therefore V = Ah$
 - = 105 × 2

= 210

Volume is 210 cm³.


Units Used in Volume Measurement

Here we have two identical cubes, one with dimensions in cm, the other in mm:

 $V = 1 \times 1 \times 1$ = 1

Volume is 1 cm³ \therefore 1 cm³ = 1000 mm³

 $V = 10 \times 10 \times 10$ = 1000

Volume is 1000 mm³

Complete:

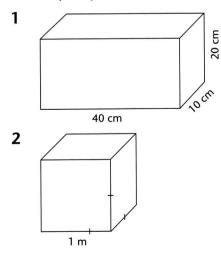
- 1 5 cm³ = ____ mm³
- **2** 25000 mm³ = $_$ cm³
- 1 5 × 1000 = 5000 ∴ 5 cm³ = 5000 mm³
- **2** $25\,000 \div 1000 = 25$ $\therefore 25\,000 \text{ mm}^3 = 25 \text{ cm}^3$

Capacity

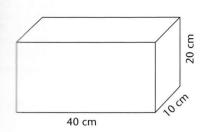
Capacity is a measure of the amount of liquid within a container. The basic unit we use is the litre (L):

1000 millilitres (mL) = 1 litre (L) 1000 litres (L) = 1 kilolitre (kL) 1000 kilolitres (kL) = 1 megalitre (ML)

- For Example
- 1 Convert:
 - a 3.2 litres = ____ mL
 - **b** 7600 mL = ____ L
 - **c** 4.28 kL = ____ L
 - **d** 2742 L = ____ kL
 - **e** 7 ML = ____ mL
- 2 Jenz opened a 2-litre bottle of cordial and poured 220 mL into each of four glasses. How much remains in the bottle (in litres)?
- **1 a** 3.2 × 1000 = 3200 ∴ 3200 mL


- **b** 7600 ÷ 1000 = 7.6 ∴ 7.6 L
- c 4.28 × 1000 = 4280
 ∴ 4280 L
- d $2742 \div 1000 = 2.742$ $\therefore 2.742 \text{ kL}$
- e $7 \times 1000 \times 1000 \times 1000$
 - = 7 000 000 000
 - ∴ 7000000000 mL
- 2 Remainder in bottle = $2000 4 \times 220$ = 2000 - 880= 1120
 - ∴ 1120 mL
 - :. 1.12 L remains

Capacity and Volume


 $1 \text{ cm}^{3} = 1 \text{ mL}$ $\therefore 1000 \text{ cm}^{3} = 1 \text{ L}$ Also, cm³ = cc $\therefore 1000 \text{ cc} = 1 \text{ L}$

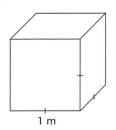
Find the capacity, in litres, of these containers:

150 *Excel* Mathematics Study Guide Year 7

V = lbh

1

 $=40 \times 10 \times 20$


= 8000

 \therefore Volume is 8000 cm³

∴ Capacity = 8000 ÷ 1000 = 8

Capacity is 8 litres.

2 1 m = 100 cm

$$V = lbh$$

:. $V = 100 \times 100 \times 100$
= 1 000 000

 \therefore Volume is 1 000 000 cm³

∴ Capacity = 1 000 000 ÷ 1000 = 1000 L

∴ Capacity is 1 kL.

 $\left[\text{i.e. 1 m}^3 = 1 \text{ kL}\right]$